Partial Differential Equations Final Exam

April 11, 2018

You have 3 hours to complete this exam. The exam is worth 100 points. Please show all work. Each question has a point value assigned next to it for a total of 90 points (10 points free). Be sure to quote clearly any theorems you use from the textbook or class. Good luck!

- 1. (10 points) a) Find complex coordinates (u(x,y),v(x,y)) so that the Laplace equation $\phi_{xx}+\phi_{yy}=0$ becomes $\phi_{uv}=0$.
 - (5 points) b) Prove that a solution of Laplace's equation can be written $\phi(x,y) = F(u) + G(v)$ for some complex functions F,G, where u,v are the coordinates.
 - (5 points) c) Express the solution $\phi(x,y)=xy$ in the form F(u)+G(v).
- 2. Consider the partial differential equation for $\theta(x,t)$ with $0 \le x \le \pi$ and $t \ge 0$

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$$
 $\frac{\partial \theta}{\partial x}(0,t) = 0$ $\theta(\pi,t) = 0$

 $(8 \ points)$ a) With a careful explanation of each step of your argument use the method of separation of variables to show that the solution has the form

$$\theta(x,t) = \sum_{n=0}^{\infty} A_n e^{-\left(n + \frac{1}{2}\right)^2 t} \cos\left(\left(n + \frac{1}{2}\right)x\right) \tag{0.1}$$

(5 points) b) If $\theta(x,0) = 1$, then show that

$$A_n = \frac{2}{\pi} \frac{(-1)^n}{(n+\frac{1}{2})}$$

(5 points) c) By integrating (0.1) with respect to x under the condition $\theta(x,0)=1$ from part b) show that

$$\frac{d}{dt} \int_{0}^{\pi} \theta(x,t) dx = \frac{\partial \theta}{\partial x}(\pi,t) = -\frac{2}{\pi} \sum_{n=0}^{\infty} e^{-\left(n + \frac{1}{2}\right)^{2} t}$$
 (0.2)

(2 points) d) Comment on the convergence of this sum for finite t.

3. A prisoner is attached to an infinitely long chain parametrised by a coordinate $x \in [0, \infty)$. At time t = 0 the prisoner starts jumping up and down on the spot x = 0 so that his height at time $t \ge 0$ is $y(0, t) = 1 - \cos(t)$. The chain starts off with

$$y(x,0) = 0$$
 $x \ge 0$, $\partial_t y(x,0) = 0$, $x \ge 0$

and obeys the wave equation $y_{tt} = y_{xx}$. By substituting D'Alembert's solution y(x,t) = F(x+t) + G(x-t) into the initial conditions show that:

- a) (5 points) For some constant k, F(z) = k and G(z) = -k for all $z \ge 0$.
- b) (5 points) Using the condition $y(0,t) = 1 \cos t$ for $t \ge 0$ prove that $G(z) = 1 k \cos(z)$ for z < 0.
- c) (5 points) Find y(x,t) for all $x \ge 0$ and $t \ge 0$.
- d) (5 points) A prison guard is sitting at x = 8 watching the chain. At what point does he notice the prisoner is jumping up and down?
- 4. (20 points total) Recall that if we have a bounded 2π periodic function

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

where

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

the N^{th} partial sum is

$$S_N(x) = \sum_{n=-N}^{N} c_n e^{inx}$$

Prove that $S_N(x)$ goes to f(x) pointwise as $N \to \infty$ if f(x) has a continuous derivative. Hint: Show that

and use this to help you rewrite $S_N(x)$

5. Suppose that $u(r,\theta)$ is a harmonic function on the closed disk $D=\{r\leq 1\}$ and that

$$u(1,\theta) = 6\cos(2\theta) - 2$$

(5 points) a) What are the maximum and minimum values of u in D? (5 points) b) Find the value of u at r=0.

Robert 7. mol

Some useful equations: General solution of the wave equation $u_{tt}=c^2u_{xx}$

$$u(x,t) = f(x+ct) + g(x-ct)$$

Laplace operator in Cartesian coordinates

$$\Delta = \partial_x^2 + \partial_y^2$$

Poisson's formula

$$u(r,\theta) = \frac{a^2 - r^2}{2\pi} \int_{0}^{2\pi} \frac{h(\phi)}{a^2 - 2ar\cos(\theta - \phi) + r^2} d\phi$$

Fourier cosine series:

$$\frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) \qquad A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$